GENERAL PROBLEM OF SYNCHRONIZATION
IN AN ALMOST CONSERVATIVE SYSTEM

(OBSHCHATIA ZADACHA O SINKHRONIZATSII
V POCHTI KONSERVATIVNOI SISTEME)

PMM Vol.29, N 5, 1965, pp. 801-809

R.F. NAGAEV
(Leningrad)

(Received April 2, 1965)

The attempt is made to examine the problem of synchronization in an almost
conservative system of weakly coupled dynamic objects with a maximum of com-
mon positions. The need for such generalizations is due to the desire to
work out a single method for analyzing numerous manifestations of the syn-
chronization phenomenon in nature and technology [1]. For this purpose a
sufficiently general classificatlion of types of conservative couplings is
introduced. This classification, apparently, can be extended to quite a
broad class of systems of interacting objects. The physical meaning and
method of introduction of the small parameter of coupling is discussed in
detail. This permits a clear presentation of specifics of the system. It
is shown that the character of the stable synchronous regime in the system
depends in a strong manner on the type of coupling. Conditions are clarified
under which the generalized integral criterion of stability of the synchron-
ous regime in the system is valid [2]. In conclusion a degenerate speclal
case 1s examined which in particular leads to a quasi-linear formulation of
the problem.

1. Types of ocouplings and basio dynamio charaoteristios of the system.
A system of » dynamic objects with weak mutual linkages will be examined.
The motion of an arbitrary ¢th objlect in the system will be characterized

by the 1 X 1 column vector of characteristic partial generalized coordinates

¢ = (G, - - -5 q1)

The method of introduction of characteristic coordinates of the obJect 1s
assumed to be independent of the character of couplings and in thls sense
not completely arbitrary. For this reason characteristic coordinates com-
pletely preserve their physical signiflcance even in the total absense of
couplings between the objects. The form of dependence of dynamic character-
istics of the object, which are determined only by its characteristic gener-
alized coordinates and velocitles, on all these quantities 1s invariant with
respect to the type of couplings. Thus, the "characteristic” kinetic energy

Ti = 1/2 qi/.Ai (qi) qi‘ (11)
where A, 1s symmetric (A,= A,’) "inertial" 7,Xx 7, matrix, and the "charac-

953



951+ R.F. Nagaev

teristic” potential energy of the object
I, = IIi(qi) (1.2)

have the form of corresponding characterlstlics of the object in the absence
of couplings. Here and in the following, transposition of the corresponding
matrix is deslgnated by a prime.

At the appearance of interactlon, objects In the system acquire in the
general case some additlonal mobility so that for description of their motions
in the intercoupled system 1t 1s necessary to specify as well m X 1 column
vector of additional generalized coordinates

£ = (Tg - - oy Tm)

In this case the general kinetic energy and generalized potential energy
of objects in the system are written in the form

k k
T*= X T;+ AT*,  II* =X II;+ AI* (1.3)
Here = =

k
AT* =§1 q, Aim (x, Q) X"+ %x"Am (%, q)x, All* = x'C(q, v¢) + ... (1.4)

are additional kinetic and potential energies of objects (*). It will be
assumed that some part of external 2n/b periodic excitation which in general
can be transmitted to the objects by means of coupling elements, 1s such that
it can be included into an¥.

Further, the concept of a supporting body or a supporting system of bodies
having m degrees of freedom will be associated with the total of additional
generalized coordinates x,,..., x, . It will be assumed here that coordi-
nates x,,..., x, are absolute in the sense that they completely describe the
motion of the supporting system. Interaction which is produced with the ald
of the supporting system, 1s always assoclated with the appearance of new
degrees of freedom in the intercoupled system of objects. These will be
called couplings of the flrst kind.

The kinetlc and potential energy of the supporting system have the form
T = 1/ox" M (%) X, O =X Cnx + . . . (1.5)
The supporting system may have distributed parameters and as a result of
this 1t may have an infinite denumerable number of degrees of freedom. ilow-
ever, in such a case the possibllity of introducing normal coordinates x,,
Xgs ... 18 always provided for the description of motion of the supporting
system. In other words, for any m , in particular for m = » , coordinates

X1s--s Xy can be selected such that symmetrical m» X m matrices NLnix:m
and C, wlll take the form

*) 1In the expression for AIl* and Expression (1.5) for Y only the first
terms of expansions of corresponding quantities in power series with respect
to xy,..., x, are written out.
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= diag (m®, ..., m™),  Cn=diag(c®,..., cm) (1.6)

The process of solution of the problem in the presence of a supporting
system with distributed parameters 1s described in [2] for a fairly general
case, however, 1n general, 1t lacks a rigorous mathematlical foundation.

m ‘x=0

Appearance of couplings of a different nature, or of couplings of the
second kind between objects 1s not necessarily connected with an increase of
degrees of freedom in the intercoupled system. However, in the general case,
for a description of dynamics of thelr elements 1t 1is necessary in addition
to X and Q.,..., Q to specify as well » X 1 column vector ¥y with
generalized coordinates y,..., y, , whlch naturally are not needed for the
description of motion of the supporting system and objJects.

Kinetlc energy and generallzed potential energy of couplings of the second
kind will be correspondingly

T = 1y N(xm@y+§"NA%%ﬂy+‘2 Ny a,x)q; +

]"1

+ X "N (¥, €, X) ¥ +i§1 q'N,, (0, €. %)X + 5 x'N_(y,q,x)x (1.7)

n® - n® (y, q, x, vt)

Thus, an external single-frequency excitation can be transmitted to obJects
only by means of couplings of the first and second kind.

2., Oriterion for weakness of interaoction between objeots, As weakness
of interaction or, which is the same thing, as weakness of couplings we will
understand the possibility in the analysis of the system to introduce effec-
tlvely a small positive parameter of coupling u such that for u = 0 the
objects in the éystem may be regarded as isolated. Here from the very begin-
ning we will agree on considering the values of dynamic and kinematic chatac-
teristics of motion of objects in the reglon of interest to us as quantities
of the order of 1, 1i.e.

=0 (1), A =0 (1), cC=0()
which in a certailn sense determines equivalent position of obJects in the
system.

Actions transmitted by means of couplings are small, Consequently, after
superposition of couplings, the general dynamic characteristics of the system
change insignificantly. General kinetic and potential energy of the system
satisfy the relationships (2 1)
T=T"4+TY4+T® = 2n+0m M=m+nv410% = 2m+0)

=1

Taking into account the essential positiveness of terms in relationships
(2.1), we shall note the conditions under which they can be satisfied.
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1) Since components I, Xm of matrix A,, characterize inertial pro-
perties of the tth object as a whole, and consequently are of the order of 1,

the estimate AT* — O (H)

will turn out to be valld only if the change of coordinates of the supporting
system is small in the process of motion, 1i.e.

x=p§ (=001 (2.2)

2) For dynamic characteristics of the supporting system to be small it
is sufficient that

M. ° C,.° .
My = =2 40 (1), Cr = ==+ 0 (1) (2.3)
where components m X m of quadratic matrices M,° and C,° are constant.

3) Inertial and force characteristics of elements of couplings of the
second kind are small so that

N(y,q,X)—uN°(y,q)+0(2)
T~y (L yNny+2q Nooy ++ }] CNGg ) ow)  (24)

n® = uﬂ‘” (¥, G, vt) + O (u?)

Thus, while the weakness of couplings of the first kind is predetermined
by the smallness of oscillations of the supporting body, the weakness of
.couplings of the second kind is due to the smallness of generalized impulses
which correspond to them. As a consequence of what was mentioned above, the
fact of linearity of equations of motion of the system wlth respect to oscil-
latory coordinates of the supporting body is established (with accuracy to
quantities of the order of u?).

Finally, the assumptlon of conservative nature of interaction between
objects in the system 1s introduced (with the same degree of accuracy).
Generalized nonpotential forces Q; = (Qi, ..., Qy) 1n coordinates of
obJects, then have partial character and are small. The appropriateness of
the last assumptlon was clarified in [3].

3. Equations of motion of the system in the form of Routh and the gener=~
ating system of the problem of synchronisation. Column vectors of general-
ized impulses of obJects are introduced into the examination

oT .
piZW:Aiqi_{—p“" (3.1)

Transforming systems (3.1), we will have

q = A7'p,+pg; P (q,p, & &, ¥, ¥) + 0. .. (3.2)
The following analysis, in which the elucidation of the physical meaning
of some quantities entering into the equation of motlon of the system will
have great importance, 1s most conveniently carried out by putting together
certaln equations of Routh which are oriilnarily used in the presence of
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cyclic coordinates. For this purpose we introduce the function of Routh

k k k
R=T— Np/a; =— L3 p/Ap, +p (L EME + X p/AALE +
i=1

i=1 i=1

k k
+ YNy + Z P/ATNGY A+ Z" pi'Ai—lNi;'Af—lp:’) +ut (3.3)
i=1 i, j=:1
and the kinetlc potential of Routh

k
Lp=R—M=— Y H +pLy+p3..., Ly=AL* + LY 4+ L® (3.4)
i=1
In relationships (3.%) with accuracy to quantitles of the order of ?
H, =Lp/Ap,+1I, (3.5)
is the "characteristic" energy (Hamiltonian function) of the t{th partial
obJect,
WAL* = p ( 2 p/A A, °E —CE) (3.6)

is the additional kinetic potential of objects due to small osclllations of
the supporting system,
(1) . . .
LY = p (Y2 § "M’ —1/28'Cn’E) (8.7)
1s the kinetilic potential of the supporting system,

me:p( YNy +Zp’A‘1Nmy ++ Zp’A“N PAID; —ﬂ‘z’) (3.8)

i, j=1
is the kinetic potential of elements of couplings of the second kind,

Equations of motion for a coupled system of objects in the form of Routh
can be obtained for example by means of the usual variational method on the
baslis of central equation of Lagrange [4]. They have the following form:

. 9H;
9 — 'ap—l=—l‘ap (AL* 4+ L?) 4 pe.
(i=1,...,k (3.9)

+ aa(’ll = p' [Ql ((L-y p,) ‘+‘ 3(] (AL +L(2))] + }L2
M+ G+ (g % g)AL +p...=0
d 0 0)\;m
: ( dt oy’ 3y) Ppr..=0

The generating system of the problem (*) in coordinates of objects disin-
tegrates naturally into % self-contalned coservative subsystems

o Ol e 0H; : .
O =g B = g (i=1y..., k) (3.10)

#) 1In the selection of the generating system, Just as in [3], it is neces-
sary to keep in mind that for some terms of the order of y may be extracted
from the left parts of equations of objects (3.9) and can be related to L()
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each of which in some region @, of partial phase space (g,, P,) permits
only one single-valued analytical first integral of energy and has an orbit-
ally stable particular solution

9" =4, (9;: ¢), P =P (P ;) (3.11)

This solution is 2p-periodic 1n the generalized sense [5] with respect
to the characteristic rapidly rotating phase

¢, =0t +a, (3.12)

Solution (3.11) depends in a continuous manner on an arbitrary phase dis-
placement o, and parameter o, which on trajectorles of the solution under
examination 1s connected in a cohtinuous one-to-one corresponding manner
with the constant of energy

Hi (g7 p°) = hy(cy) (3.13)

The frequency (angular velocity) of the solution can vary along the tra-

jectory of solution (3.11) within ¢, and within the limits of the range

o; & [0V, 0] (3.14)

The dependence of the frequency of solution (3.11) on the constant of
energy, which 1s given parametrically as

hi = hi (Ci), W; = W (c,-)

will be called the skeletal curve of the tth obJect as appllied to the solu-
tion under examination.

The possibility of a system entering into synchronlzation in case of suf-
ficiently weak couplings (4 1s sufficiently small) is predetermined by the
presence of a synchronous generating approximation [3], l.e. by the presence
of Equations
O] = ...=@f =V (3.15)

In other words, the intersection of frequency ranges of generating obJects
{(band of transmission of the system) must not be empty and must include in
i1t the frequency of external excitation

k
[0, 0®] = (] [0, 0] S (3.16)
i=1

Equations of motion of elements of couplings in the generating approxima-

tion permit a stable 2n/v perlodic solution
u = U(T, Ciy v oo 9y Clty gy o v vy ka) (t=vt,u= (Elo, ey gmo, ylc,. Cy yno)) (317)

Quantitles a,,..., oy in Expression (3.17) are determined uniquely from
relationships (3.15). The presence of a limited solution (3.17) implies in
particular that the frequencles of free small oscillations of the supporting
systems, determinable from Equation

[Cr® —APM,° | =0 (3.18)
satisfy the following condltion:
Ae==TVv (s=4,....,m r=1,2,...)
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4. General case of essentially nonlinear objeots. By means of ordinary
substitution only of variables of coupling &, €°, ¥ and ¥y’ the system of
equations (3.9) can be reduced to system

N
2(2 Ltm+n
i=1

of the filrst order, solved with respect to derivatives.

In the same way the equation of motion of objects essentially does not
change wilth accuracy to quantitles of the order of pu inclusive. Equations
of motion in coordinates of coupling do not contain any singularities because
of initial assumptions. Known theorems on existence and stability of peri-
odic solutions for sufflciently small value of parameter [2 and 5] turn out
to be applicable directly to system (3.9).

The most general case 1is examined below where all objects 1n the genera-
ting approximation are substantlially nonisochronous in the sense that every-
where within @, the dependence w,= w,(¢,;) is essentlal and

(Di(2) —_ (Di(l) =0 ('1), or d(l)i / dCi =0 ('1) (4.1)
the frequency range of the object 1s not small,

In this case parameters ¢,,..., ¢, which characterize the synchronous
generating approximation are determined uniquely from relatlonships (3.15).
The lack of isolation 1s assoclated exclusively with the presence of arbltrary
pbhase displacements a,,..., a, . The condition for the existence of a syn-
chronous regime in the system in this case coincides with the condition for
the presence of real solutions of the following system of equations:

2n
Di=F;+Ri(og,..., %) =0 (i=1,...,k (Fi=2_1n—SQi’qi.dr) (4.2)
0
which 1s the power average over a perlod of nonpotential forces of the tth
object in the generating approximation. The functions of phase displacements
R are reduced to the following form after some simple transformations inclu-

ding integration by parts:
27

1 ({0 . 9 oA
Ri= 5 \(0) 5 + 0 5 ) (AL + L) dv = 2 =1, (43)
0
The quantity v an
A, 0n) = o S Lody (4.4)

0
will be called the action integral of the coupling in the generating appro-

ximation.

It 1s noted that over the perlod the average values of inherent dynamlc
characteristics of partial objects do not depend on phase displacements in
the generating approximation; therefore
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an an
2n 1 @ 1 8 ¢
TH;::TL—ESLRM:T&ESL& (4.5)
0 ]

where | 1is the general kinetic potential of the system.

We shall perform a transformation of the virial over the equation of small
fluctuations of the supporting system in the generating approximation. For
this purpose 1t is multiplied by the line-vector e°’ from the left; then it
is not difficult to arrive at the following scalar equality

k

d 5 oot o Q

S (B ME) — 2LV - LS p A A B ALF =0
i=1

Averaging the last relationship over the period we will have
an
= S(2L“’ + ALY dv =0 (4.6)
0
Thus, for any value of phase displacements Qg seevs Qys OVED the period
the average additional kinetic potential of objects is egqual to twice the
action integral of the supporting system taken with the opposite sign., Keep-
ing in mind (4.6) we shall write the expression for the action integral of
coupling (4.4) in the form an
A=oe S (L™ — LYY dx (4.7)
0

Stability of the synchronous regime under investigation can be studled
in the first approximation for example in such a way as it was done in [2].
Then it turns out that for small scale stabllity of synchronous motions of
objects it is necessary {but not sufficilent) that roots of Equation

1 #A
_k:-aaiéaj -— ﬁijx ! == 0 (4.8)
be real and negative. In Equation (4.8) the quantity
__ (dhy/dcy)
5= (duydey |og= (4.9

which characterizes the speed of energy change of the ith partial object with
change in the frequency of its motion in the zone of stabllization of synchro-
nous frequency of the system, will be called the coefficlent of steepness of
the skeletal curve of the object. Sufficlent conditions for stabllity of the
synchronous regime of the system, which for the case of essentially different
ocbjects have, apparently, quite nontrivial character, were found in [3] for
the particular case of objects with one degree of freedom in the system with
couplings of the second kind.

Just as in preceding investigations [1 to 3], the condition for existence
and stability of a synchronous regime in a system of identical or, mcre
exactly, almost identical purely conservative objects (k= ...= k= k) 1s
reduced to a requirement of extremum of the action integral of coupling A
with respect to generating phase displacements, The character of the extre-
mum (maximum or minimum) is determined in the first place by the kind of
coupling and in the second place by the sign of the coefficlent of steepness
of objects.

Thus, the character of phasing in stable synchronous motions of objects
depends essentially on the nature of coupling {see (4.,7}). Under certain
conditions couplings of different kinds can completely or partlally cancel
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the action of each other. As a result of this, the system will fall out of
synchronism due to the presence of nonpotentilal nonuniformitles of random
character,

Let us examine a mest simple example which i1llustra-
8~ o tes the properties described above.

Let a system be glven conslsting of two identical

” 2 almost conservative mechanlcal vibrators rotating in
one direction around one and the same axis, Coupling
of the first kind between vibrators is accomplished by
means of massive supporting body of mass N . Coupling
of the second kind 1s accomplished by means of mass m,
placed at the apex (¢ of the hinged plvoted rhombus
04ACB .

Fig. 1. Couplings between vibrators are actually small if
the following relationships are sufficlently smalll

AN

©
x -8

By =m/ M, pa=rmg/m

where m are cqual masses of vibrators. Here the synchronous motion of
vibrators in the generating approximation bears the character of uniform
rotation with angular velocity

¢ =v+ay, Ps° =Vt -+ ay
Kinetic energies of elements of coupling of the first and second kind,

respectively, are independent of time with accuracy to quantities of the order
of 1® and are equal to :

TO = p,2medv? [1 + cos (@ —ag)], T = pyme™? [1 + cos (@ — a)]

The action integral of coupling in the generating approximation (4.7) 1=
written in the form

BA = me®v® (i — 2y) [1 - cos (23 — a)]
Simple analysis leads to the following concluslons.

1, In the absence of couplings of the second kind there exists a stable,
out-of-phase regime of synchronous rotation of vibrators. For this regime
the kinetlc energy of the supporting body is minimal.

2. In the absence of couplings of the first kind it 1s opposite. The
in-phase regime is stable and the kinetic energy of mass m, 1s maximal.

3. In the presence of couplings of both kinds the system falls out of
synchronization if the approximate relationship 2u,= u, holds.

5. Isoohronism in the generating approximation. The speclal particular
case 1s examined briefly below, when the geberating system (3.10) can be
selected such that the dependence of frequency on energy dlsappears, the
frequency ranges of objects reduce to a point and the conditlons of existence
of synchronous generating approxlmation 3.15) are satisfled identically.
This case, which in particular leads to quasi-linear formulation of the prob-
lem, is most simple for analysis and probably because of this has been well
studied previously for a series of actual examples,

Nonisolation of synchronous generating approximation 1s assoclated here
not only with uncertainty of phase displacements agise.e, ays but also with
arbitrariness in she selection of values of energy parameters pi,..ey oy-

Equations for investigation of parameters of synchronous generating solu-
tion, the number of which correspondingly increases by a factor of two, are
written in the form

aA A .
Fi—*—"(?,‘g;:o, (I)-L-F_a'cjxo (l:"lx'-')k) (5'1)

where F;(¢) and A (%, ... ey . . &) have their previous physical mean-
ing and are computed from Equations (4.4) and (4.9), while
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2n
1 ,0g;0
®; (¢;) = 35— S Q; a—;idt (5.2)
0

For asymptotic stabllity of the synchronous regime under examination it
1s necessary and sufflcient that all roots of Equation

| &A #BA  dF,
dupa; %% Gage; T dg Vi
A #A s = (-3}
6aiaci 6ciac]~ ( dci - “> 6”

satisfy the condltion Rex< O .

In the case of a purely conservative system (under the assumption that
nonpotentlal forces in the system have higher degree of smallness) we arrive
again at the formulation of the integral criterion of stability. In other
words, for existence and asymptotic stabillity of synchronous regime 1n such
a8 system the presence of a strict minimum of the potential function A with
respect to varilables qj,..., ay and o0;,..., ¢, 18 necessary and sufficlent.
In this case due to symmetry of determinant (5.3) all its roots turn out to
be real.
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