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The attempt is made to examine the problem of synchronization In an almost 
conservative system of weakly coupled dynamic objects with a maximum of com- 
mon positions. The need for such generalizations Is due to the desire to 
work out a single method for analyzing numerous manifestations of the syn- 
chronization phenomenon in nature and technology Cl]. For this purpose a 
sufficiently general classification of types of conservative couplings is 
introduced. This classlflcatlon, apparently, can be extended to quite a 
broad class of systems of interacting objects. The physical meaning and 
method of Introduction of the small parameter of coupling Is discussed In 
detail. This permits a clear presentation of specifics of the system. It 
IS shown that the character of the stable synchronous regime In the system 
depends in a strong manner on the type of coupling. Conditions are clarified 
under which the generalized Integral criterion of stability of the synchron- 
ous regime in the system Is valid [2]. In conclusion a degenerate special 
case Is examined which in particular leads to a quasi-linear formulation of 
the problem. 

1. mr ot ooupllngr uad barlo dynamlo ohWaOtoslgtlo# of the rfrtrm. 

A system of k dynamic objects with weak mutual linkages will be examined. 

The motion of an arbitrary tth object In the system will be characterized 

by the I x 1 column vector of characteristic partial generalized coordinates 

Qi = (Qil9 * - * 9 Qli) 

The method of Introduction of characteristic coordinates of the object Is 

assumed to be independent of the character of couplings and in this sense 

not completely arbitrary. For this reason characteristic coordinates com- 

pletely preserve their physical significance even in the total absense of 

couplings between the objects. The form of dependence of dynamic character- 

istics of the object, which are determined only by Its characteristic gener- 

alized coordinates and velocities, on all these quantities Is Invariant with 

respect to the type of couplings. Thus, the"characterlstlcN kinetic energy 

WI) 
where A, Is symmetric (A,= A,') "inertial" I,x 1, matrix, and the"charac- 
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teristic" potential energy of the object 

fIi= r-$6&) (1.2) 

have the form of corresponding characteristics of the object In the absence 

of couplings. Here and in the following, transposition of the corresponding 

matrix is designated by a prime. 

At the appearance of interaction, objects in the system acquire in the 

general case some additional mobility so that for description of their motions 

in the intercoupled system it is necessary to specify as well m x 1 column 

vector of additional generalized coordinates 

2 = (X1' . . .( s,) 

In this case the general kinetic energy and generalized potential energy 

of objects in the system are written in the form 

T*=~3'i+fW*, rI*=&t,+MI* W 
i=l i=l 

Here 

AT* = %$I q,‘Xim (x, q) x’ + $ x’*k, (x, q> x’, AII* = x’C (q, vt) + . . . (1.4) 

are additional kinetic and potential energies of objects (*). It will be 

assumed that some part of external m/v periodic excitation which in general 

can be transmitted to the objects by means of coupling elements, is such that 

it can be Included into bi'l*. 

Further, the concept of a supporting body or a supporting system of bodies 

having m degrees of freedom will be associated with the total of additional 

generalized coordinates x1>..., X, . It will be assumed here that coordi- 

nates xl,..., x, are absolute in the sense that they completely describe the 

motion of the supporting system. Interaction which is produced with the aid 

of the supporting system, is always associated with the appearance of new 

degrees of freedom in the intercoupled system of objects. These will be 

called couplings of the first kind. 

The klnetlc and potential energy of the supporting system have the form 

T(l) = l/*X“M&)X~, n'"' = l/sx'&x + . * * (1.5) 

The supporting system may have distributed parameters and as a result of 

this It may have an infinite denumerable number of degrees of freedom. Xow- 

ever, in such a case the possibility of introducing normal coordinates x1, 

Xa,... is always provided for the description of motion of the supporting 

system. In other words, for any m , In particular for m = m , coordinates 

X1,--, X* can be selected such that symmetrical m Xm matrices MmiX_, 

and C, will take the form 

") In the expression for An* and Expression (1.5) for II(‘) only the first 
terms of expansions of corresponding quantities In power series with respect 
to X1,* **, x, are written out. 
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MmIr_ = diag (m(l), . . . , n@)), C, = diag (c(l), . . . , dm)) (1.6) 

The process of solution of the problem in the presence of a supporting 

system with distributed parameters Is described in [2] for a fairly general 

case, however, in general, it lacks a rigorous mathematical foundation. 

Appearance of couplings of a different nature, or of couplings of the 

second kind between abjects Is not necessarily connected with an Increase of 

degrees of freedom in the intercoupled system. However, In the general case, 

for a description of dynamics of their elements it is necessary in addition 

to x and &,..., Qr to specify as well n X 1 column vector y with 

generalized coordinates yl,..., I/~ , which naturally are not needed for the 
description of motion of the supporting system and objects. 

Kinetic energy and generalized potential energy of couplings of the second 

kind will be correspondingly 

T(‘) = f y"N, (y, q, x) y’ + i qil’N,,(Y, q,x)y’ + $+ q,I’NJy, q, x) qj’ + 
i=l 

+ x”Nmn (Y 7 (I, X) Y' + il q;‘Q, (y, q, x) x’ + + x”N, (y, q, x) x* (1.7) 

rP2) = IF2) (y, q, x, vt) 

Thus, an external single-frequency excitation can be transmitted to objects 
only by means of couplings of the first and second kind. 

2, Orltrrlon for wrakmrr of lntrrrotlon brtwrrn objrotr. As weakness 

of interaction or, which Is the same thing, as weakness of couplings we will 

understand the possibility in the analysis of the system to introduce effec- 

tively a small positive parameter of coupling p such that for w = 0 the 

objects in the system may be regarded as Isolated. Here from the very begin- 

ning we will agree on considering the values of dynamic and kinematic chatac- 

teristlcs of motion of objects In the region of Interest to us as quantities 

of the order of 1, I.e. 

q = 0 (I), A = 0 (I), c = 0 (1) 

which In a certain sense determines equivalent position of objects in the 

system. 

Actions transmitted by means of couplings are small. Consequently, after 

superposition of couplings, the general dynamic characteristics of the system 

change insignificantly. General kinetic and potential energy of the system 

satisfy the relationships 
(2.1) 

Ir k 

T = T* + T(‘) + T(*) = i$l Ti + 0 (p), TI = II* + II”‘+ H(2) = igl ITif 0 (p) 

Taking Into account the essential positiveness of terms In relationships 

(2.1), we shall note the conditions under which they can be satisfied. 
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1) Since components Zi Xm of matrix A,, characterize inertial pro- 

perties of the tth object as a whole, and consequently are of the order of 1, 

the estimate 
AT* = 0 (p) 

will b.rn out to bevalId only If the change of coordinates of the supporting 
system is small In the process of motion, i.e. 

x= PE (t = 0 (1)) (2.2) 

2) For dynamic characteristics of the supporting system to be small It 

Is sufficient that 

(2.4 

where components m Xm of quadratic matrices yo and C,O are constant. 

3) Inertial and force characteristics of elements of couplings of the 

second kind are small so that 

N (Y, q, 4 = 0” (Y, q) + 0 W> 

rP2) = pd2) (y, q, vt) + 0 (p”) 

Thus, while the weakness of couplings of the first kind is predetermined 

by the smallness of oscillations of the supporting body, the weakness of 

.couplings of the second kind is due to the smallness of generalized impulses 

which correspond to them. As a consequence of what was mentioned above, the 

fact of linearity of equations of motion of the system with respect to oscil- 

latory coordinates of the supporting body Is established (with accuracy to 

quantities of the order of cl"). 

Finally, the assumption of conservative nature of Interaction between 

objects In the system is introduced (with the same degree of' accuracy). 

Generalized nonpotential forces Qi = ((&I, . . ., Qili) in coordinates of 

objects, then have partial character and are small. The appropriateness of 

the last assumption was clarified in [3]. 

3. Equrtlonr oi motion oi thr ryrtrm in thr form of Routh and the genrr- 

rting ryrtrm of the problrm ot rynohronir@tlon. Column vectors 

lzed Impulses of objects are Introduced Into the examination 

pi = $ = Aiqi’ + p . . . 
i 

Transforming systems (3.1), we will have 

q; = -$-lpi + pqi’(l) (q, P, 5, E’, Y, y’) + ~1’ . . 

of general- 

(3.1) 

(3.2) 

The following analysis, in which the elucidation of the physical meaning 

of some quantities entering Into the equation of motion of the system will 

have great Importance, Is most conveniently carried out by putting together 

certain equations of Routh which are orilnarlly used In the presence of 
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cyclic coordinates. For this purpose we introduce the function of Routh 

R = T - i p,'$ = - $ jj p;A;lpi + p ($ e”Wg’ + i pi’A;‘A$’ + 
i=l i=l i=l 

+ $ f’Nnoy’ + fJ p/A,-‘Niiy’ + $ i pi’A;‘N~Aj-‘pj) + pa. . . (3.3) 
i=l i, j=;l 

and the kinetic potential of Routh 

L~=R-II=-~Hi+~L~+~‘_.., L,, = AI,* + L(l) + L@) (3.4) 
i=l 

In relationships (3.4) with accuracy to quantities of the order of pa 

Hi = +pi’Ai_‘pi + Iii (3.5) 

is the "characteristic" energy (Hamiltonlan function) of the 5th partial 

object, 

PAL* = P(~$P~'A;'A~,"E'-C'~) (3.6) 

is the additional kinetic potential of objects due to small oscillations of 
the supporting system, 

/AL”’ = P(‘/~ ~"M,"~*--/,&,oQ (3.7) 

is the kinetic potential of the supporting system, 

pL@) = p (a fNnoy’ + i,p;A;lNinoy’ + + i p,lA,-lN,;A;lp, - n(S)) (3.8) 
i=l i,j=l 

is the kinetic potential of elements of couplings of the second kind. 

Equations of motion for a coupled system of objects in the form of Routh 

can be obtained for example by means of the usual variational method on the 

basis of central equation of Lagrange 141. They have the following form: 

q,’ _ %i = -p .?? (AL* + L@‘) + ~2 
L ‘Pi aPi 

. . . 

pi’ + ~ = ~ [ Qi (qi, pi) + Eli (AL* + L’2’)] + ~’ . . . 
(i - 1,. . . , k) (3.9) 

M,,~~” + cm06 + (;+ - $) AL* + p . . . = 0 

p (&f:-$) Lt2) + p... = 0 

The generating system of the problem (*) in coordinates of obJects dlsin- 

tegrates naturally into k self-contained coservative subsystems 

aHi 
Pi" = - agiO (i = I, . . . ( k) (3.10) 

*) In the selection of the generating system, just as in [3], it is neces- 
sary to keep in mind that for some terms of the order of ~1 may be extracted 
from the left parts of equations of objects (3.9) and can be related to Lt2). 
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each of which in some region Gi of partial phase space (a,, P,) permits 
only one single-valued analytical first integral of energy and has an orbit- 

ally stable particular solution 

qi" = qi" ($3 c,L P: = P; (cpp CJ (3.11) 

This solution is 2n-periodic In the generalized sense [5] with respect 

to the characteristic rapldly rotating phase 

'pi = o,t + "; (3.12) 

Solution (3.11) depends In a continuous manner on an arbitrary phase dis- 

placement a, and parameter C, which on trajectories of the solution under 

examination is connected in a continuous one-to-one corresponding manner 

with the constant of energy 

Hi(ql, pi") = hi (ci> (3.13) 
The frequency (angular velocity) of the solution can vary along the tra- 

jectory of solution (3.11) within G1 and within the limits of the range 

Cili E [@i(l), Oi(')] (3.14) 

The dependence of the frequency of solution (3.11) on the constant of 
energy, which Is given parametrically as 

hi = hi (Ci), Oi = Oi (Ci) 

will be called the skeletal curve of the tth object as applied to the solu- 

tion under examination. 

The possibility of a system entering Into synchronization in case of suf- 

ficiently weak couplings (cl Is sufficiently small) is predetermined by the 

presence of a synchronous generating approximation [3], I.e. by the presence 

of Equations 
WI=... =h,k=v (3.15) 

In other words, the Intersection of frequency ranges of generating objects 
(band of transmission of the system) must not be empty and must Include in 

it the frequency of external excitation 

[(Jl), (s(2)] = ; [(&ll, o$?)J E y (3.16) 
i-1 

Equations of motion of elements of couplings In the generating approxlma- 
tion permit a stable m/v periodic solution 

u = u (z, Cl, . . . ( C/c, a,, . . . ) Uk) (z = vt, u = (fl”, . . ., g”,O, y1O,. . ., y,“)) (3.17) 

Quantities c~,..., clr In Expression (3.17) are determined uniquely from 

relationships (3.15). The presence of a limited solution (3.17) Implies In 

particular that the frequencies of free small oscillations of the supporting 

systems, determinable from Equation 

(c$-Lh,ahI,OI =o (3.18) 

satisfy the following condition: 

L#rv (s=I,...,m, r7=1,2,...) 
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4. CkYmU 0110 of rrrmtlally nonlinorr objeotr. By means of ordinary 
substitution only of variables of coupling f, t', p and y' the system of 

equations (3.9) can be reduced to system 

N 

2 (2 hfmfn) 
i=l 

of the first order, solved with respect to derivatives. 

In the same way the equation of motion of objects essentially does not 

change with accuracy to quantities of the order of v Inclusive. Equations 

of motion in coordinates of coupling do not contain any singularities because 

of initial assumptions. Known theorems on existence and stability of perl- 

odlc solutions for sufficiently small value of parameter [2 and 53 turn out 

to be applicable directly to system (3.9). 

The most general case is examined below where all objects In the genera- 

ting approximation are substantially nonlsochronous in the sense that every- 

where within cI the dependence w,= w,(c,) is essential and 

($0) -c@ = 0 (I), or C&/&i = O(1) (4.1) 
the frequency range of the object is not small. 

In this case parameters cl,..., cr which characterize the synchronous 

generating approximation are determined uniquely from relationships (3.15). 

The lack of isolation is associated exclusively with the presence of arbitrary 

phase displacements cl,..., ck . The condition for the existence of a syn- 

chronous regime in the system In this case coincides with the condlt%on for 

the presence of real solutions of the following system of equations: 

Pi = Fi + Ri (al, . . . , arc) = 0 (i = 1, . . . , k) ( Fi = &“s” Q;qi -dr) (4.2) 
'0 

which Is the power average over a period of nonpotential forces of the tth 

object in the generating approximation. The functions of phase displacements 

R are reduced to the following form after some simple transformations lnclu- 

ding integration by parts: 
2x 

Ri= & s(p;'~~+g,"~~)(AL*+L'2')dz=~~ (i=i,...,k) (4.3) 
0 

The quantity 

A(%, * - .,l%*)=&2~LOdT 

0 

will be called the action Integral of the coupling in the 

xlmatlon. 

It Is noted that over the period the average values of 

characteristics of partial objects do not depend on phase 

the generating approximation; therefore 

(4.4) 

generating appro- 

inherent dynamic 

displacements In 
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where L Is the general kinetic potential of the system. 

We shall perform a transformation of the virial over the equation of small 

fluctuations of the supporting system in the generating approximation. For 

this purpose it is multiplied by the line-vector fO' from the left; then It 

Is not difficult to arrive at the following scalar equality 

-$ (co’Mmo~w) - 2L”) + --$ $ p;‘A;lAi,P - AL* = 0 
i=l 

Averaging the last relationship over the period we will have 

44.6) 

Thus, for any value of phase displacements al,..., a,, over the perZod 

the average additional kinetic potential of objects is equal to twice the 

action integral of the supporting system taken with the opposite sign. Keep- 

ing In mind (4.6) we shall write the expression for the action integral of 
coupling (4.4) in the form an 

A = -& \ (L’“’ -L(l)) & 

0 
(4.7) 

Stability of the synchronous regime under Investigation can be studied 
fn the first approximation for example in such a way as it was done in [2]. 
Then it turns out that for small scale stability of synchronous motions of 
objects it is necessary (but not sufficient) that roots of Equation 

be real and negative. In Equation (4.8) the quantity 

(dhildcd 
ki = (&,&fci) Oil’” 

(4.8) 

which characterizes the speed of energy change of the tth partial object with 
change in the frequency of its motlon in the zone of stabilization of synchro- 
nous frequency of the system, will be called the coefficient of steepness of 
the skeletal curve of the object. Sufficient conditions for stability of the 
synchronous regime of the system, which for the case of essentially different 
objects have, apparently, quite nontrivial character, were found in [3] for 
the particular case of objects with one degree of freedom in the system with 
couplings of the second kind. 

Just as in preceding investigations [l to 31, the condition for existence 
and stability of a synchronous regime in a system of identical or, mere 
exactly, almost identical purely conservative objects (&= . ..- kt- k) is 
reduced to a requirement of extremum of the action integral of coupling A 
with respect to generating phase displacements. The character of the extre- 
mum (maxlmum or minimum) ia determined in the first place by the kind of 
coupling and in the second place by the sign of the coefficient of steepness 
of objects. 

Thus, the character of phasing in stable synchronous motions of objects 
depends essentlally on the nature of coupling (see (4.7)). Under certa%n 
conditions couplings of different klnds can completely or partially Cancel 



the action of each other, As a result of this, the system willfall out of 
synchronism due to the presence of nonpotentlal nonuniformities of random 

charaoter. 

Let us BxEumlne a most simple example which Illustra- 
8" C tes the properties described above. 

I' 

,+#! 

~ 

Let a system be gZven consisting of two identical 
almost conservative mechanical vibrators rotating In 

@ b 
one direction around one and the same axis. Coupling 
of the first kind between vibrators Is accomplished by 

M means of massive supporting body of mass M . Coupling 
of the second kind Is accomplished by means of mass m, 
placed at the apex C of the hinged pivoted rhombus 
OACB . 

Fig. 1. Couplings between vibrators are actually small if 
the following relationships are sufficiently small1 

where m are equal masses of vibrators. here the synchronous motion of 
vibrators in the generating approximation bears the character of uniform 
rotation with angular velocity v 

'pl* = vt + al, ga" = vt -t-a, 
Kinetic energies of elements of coupling of the first and second k%nd, 

respectively, are independentoftine with accuracy to quantities of the order 
of MS and are equal to 

T(l) = y12meava [ 1 + Cos (al - Ct,)], TC2j = pLlmeaV2 [ 1 + cos (CC1 - as)1 

The action integral of coupling In the generating approximation (4.7) is 
written in the form 

M = mea+ (pa - 2p3 11 A- cos (al - %)I 

Simple analysis leads to the following conclusions. 

1. In the absence of couplings of the second kind there exists a stable, 
out-of-phase regime of synchronous rotation of vibrators. For this regime 
the kinetic energy of the supporting body is minimal. 

2. In the absence of couplings o_ f the first kind it is opposite. The 
in-phase regime is stable and the kinetic energy of mass mO is maximal. 

3. In the presence of couplings of both kinds the system falls out of 
synchronization If the approximate relationship &1~ 1-1~ holds. 

5. I~oohronirm in thr gwaoratlng appro~tlOn, The special Particular 
case is examined briefly below, when the geberating system (3.10) can be 
selected such that the dependence of frequency on energy disappears, the 
frequency ranges of objects reduce to a 

a 
oint and'the conditions of existence 

of synchronous generating approximation 3.15) are satisfied identically. 
This case, which in particular leads to quasi-linear formulation of the prob- 
lem, is most simple for analysis and probably because of this has been well 
studied previously for a series of actual examples. 

Nonisolation of synchronous generating approximation is associated here 
not only with uncertainty, of phase displacements al,..., ar, but also with 
arbitrariness in ;he selection of values of energy parameters cl,..., cr. 

Equations for Investigation of parameters of synchronous generating solu- 
tion, the number of which correspondingly increases by a factor of two, are 
written in the form 

dh aLI 
&-kq=O, Qi + aci -=o (i = 1, . . ., k) 

where 
ing and ~~'e"%o~~tedA~~m'Ed;a~~o~~-j4':4j and (4.9), while 

c~,)~have their previous physical mean- 
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For asymptotic stability of the synchronous regime under examination It 
Is necessary and sufficient. that all roots of Equation 

I aaA 
- -&ijX aa$aj 

J?!L + dz fiij 
aqacj 

a=n (5.3) 

&tii$ 

-_!?I_ + (dz&jij ==O 

ac,ac j 

satisfy the condition Ren< 0 . 

In the case of a purely conservative system (under the assumption that 
nonpotentlal forces In the system have higher degree of smallness) we arrive 
again at the formulation of the Integral criterion of stability. In other 
words, for existence and asymptotic stability of synchronous regime In such 
a system the presence of a strict minimum of the potential function A with 
respect to variables cl,..., ay and Ok,..., or Is necessary and sufficient. 
In this case due to symmetry of determinant (5.3) all Its roots turn out to 
be real. 
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